

Another efficient and affordable ACT! Add-On by

Reference Guide

Automatic Field Calculations for ACT! 2011 and higher

http://www.exponenciel.com

http://www.exponenciel.com/

Automatic Field Calculations Reference Guide 2

Table of contents
Operators .. 3

Basic Operators: .. 3
Operator precedence ... 3

Functions .. 5
Text/String functions .. 5
Mathematical functions ... 7
If function .. 7
Comparison functions .. 7
Statistical functions .. 8
AutoNumber function ... 9
Date/Time functions .. 10
Format function ... 12
Run function .. 14
MessageBox function ... 15
ConfirmationBox function ... 15
PromptBox function... 15
Internal Record ID function .. 15
Copy To Clipboard function ... 16
GenerateDocument function ... 16
Financial functions .. 16

Examples of calculations... 20

Automatic Field Calculations Reference Guide 3

Operators

Basic Operators:

You may use any of these four basic operators:

+ (plus)
– (minus)
* (multiplied by)
 / (divided by)

You may use parentheses as well.

Examples of calculations:

You may use any combination of the above operators with or without parentheses.

For instance:
([FieldA]+100)*0.05  5% of FieldA + 100
[FieldA]+[FieldB]-[FieldC]  FieldA + FieldB – FieldC
([FieldA]*125) + ([FieldB]/5)  etc.
[FieldA]  Copies FieldA to the target field
0  Resets target field to 0
[FieldA]+" "+[FieldB]  Concatenates FieldA and FieldB w/ a space between
etc.

Operator precedence

Typically the operator precedence (the order in which the operators are evaluated) is */+- which
means that:
 50*3+1 equals 151 and not 200 (you first multiply then add)

Automatic Field Calculations follows this rule for simple calculations like the one above but for
more complicated calculations, make sure you use parenthesis to help Automatic Field
Calculations determine in which order it should proceed with the calculations (in
the example above it would mean writing (50*3)+1 instead of 50*3+1).

Besides the 4 basic operators, you may also use Boolean operators. Yes is returned if the
comparison is true. No if the comparison is false.

Automatic Field Calculations Reference Guide 4

o >, <, >=, <=, <> allow to compare values.
Ex: if FieldA = 5 and FieldB = 10,[FieldA]>[FieldB] returns No.

o NOT is used to perform a logical negation.
Ex: if field FieldA = 5 and FieldB = 10, NOT([FieldA]>[FieldB]) returns Yes.

o AND, OR, XOR (logical exclusion), EQV (logical equivalence), IMP (logical
implication) may also be used.
Ex: if field FieldA =5 and 5 FieldB 1=10, ([FieldA]=5)OR([FieldB]=8) returns Yes.

Note: If you would rather get the numeric equivalent of True and False returned instead of
Yes and No, add a tilde sign ~ in front of your calculation. -1 will be returned instead of Yes
and 0 instead of No.

FieldA = 5 and 51 = 10 and [FieldC]=[FieldA]>[FieldB] then [FieldC]="No"
[FieldC]=~[FieldA]>[FieldB] then [FieldC]="0"

Automatic Field Calculations Reference Guide 5

Functions

Automatic Field Calculations can accept a number of different functions. The function names
are not case-sensitive.

Text/String functions

Even though not always necessary, it is recommended to always surround strings with
quotes.

o & is really an operator. It concatenates strings.
Ex: if FieldA = "Mr." and FieldB= "Huffman" then [FieldA]&[FieldB] returns
Mr.Huffman.
To insert a space use the underscore character as ACT! won't allow a space in the
arguments: [FieldA]&"_"&[FieldB] returns "Mr. Huffman".

o Ucase will convert to uppercase.
Ex: if FieldA = "Chicago" then UCase([FieldA]) returns CHICAGO.

o LCase will convert to lowercase.
Ex: if FieldA = "Chicago" then LCase([FieldA]) returns chicago.

o Fcase will capitalize every first letter of the words of a string
Ex: if FieldA=" A1 haRDWARE " then Fcase[FieldA] returns A1 HaRDWARE.

o FcaseL will capitalize every first letter of the words of a string and make all other letters

lowercase.
Ex: if FieldA="A1 haRDWARE" then Fcase[FieldA] returns A1 Hardware.

o Trim will remove leading and trailing spaces.

Ex: Trim(" Chicago ") returns Chicago.

o Ltrim will remove leading spaces.
Ex: Ltrim(" Chicago") returns Chicago.

o Rtrim will remove trailing spaces.
Ex: Rtrim("Chicago ") returns Chicago.

o Len will return the number of characters in a string.

Ex: if FieldA = " Chicago" then Len([FieldA]) returns 7.

o Space(x) will insert x spaces.
Ex: space(10) returns " " (10 spaces).

o String(value) will force to consider value as a string even if it is numeric or currency.

Automatic Field Calculations Reference Guide 6

Ex: String($65.00)&" + taxes" returns "$65.00 + tax" (whereas "$65.00"&" + taxes"
would return "65 + taxes”).

o Val returns a number in a string. It stops at the first character it does not recognize as

part of a number.
Ex: if FieldA = "12C" then Val([FieldA]) returns 12.

o Left(value;#_of_chars) returns the first #_of_chars characters from the value,
starting from the left
Ex: if [FieldA]="414-555-1212" then Left([FieldA];3)="414"

o Right(value;#_of_chars) returns the first #_of_chars characters from the value,
starting from the right
Ex: if [FieldA]="414-555-1212" then Left([FieldA];8)= "555-1212"

o Mid(value;start_pos;#_of_chars) returns #_of_chars from the value, starting from
the start_posth character. If #_of_chars is omitted, it returns all characters right of the
pos.
Ex: Ex: if [FieldA]="414-555-1212" then mid([FieldA];5;3)= "555"

o Replace(value;char(s)_to_replace;replacement) replaces the character(s) to

replace by the replacement.
Ex: if [FieldA]="24 North Avenue" then Replace([FieldA];"e";"i")= "24 North Avinui"

 Ex: if [FieldA]="24 North Avenue" then Replace([FieldA];"nue";".")= "24 North Ave."

o ReplaceWord(value;word_to_replace;replacement_word) replaces the word
to replace by the replacement word.
Ex: if [FieldA]="24 North Avenue" then Replace([FieldA];"Avenue";"Ave.")= "24 North
Ave."

o Initials(value) returns a string made of the first letters of each word, in uppercase.

Ex: if [FieldA]="Chris Huffman" then Initials([FieldA])="CH"

o Contains(start;StringBeingSearched;StringSought;<1>) returns an integer
specifying the start position of the StringSought within the StringBeingSearched. The
last argument if used should be one and specifies that the search is not case-sensitive
Ex: if [FieldA]="Chris Huffman" then Contains(1;"H";[FieldA])=7
if [FieldA]="Chris Huffman" then Contains(1;"H";[FieldA];1)=2
If the StringSought is not found, it return 0;

o Frac2Num(string) converts a fraction to a decimal.
Ex: if [FieldA]="1/4" then Frac2Num([FieldA])=.25

Automatic Field Calculations Reference Guide 7

Mathematical functions

o Abs returns the absolute value of a number.
Ex: if FieldA = -5.32 then Abs([FieldA]) returns 5.32.

o Sgn returns 1 if the number is >0, 0 if the number =0, -1 if the number is <0.
Ex: if FieldA = -5.32 then Sgn([FieldA]) returns -1.

o Sqrt returns the square root of a number.

Ex: if FieldA=25 then Sqrt([FieldA]) returns 5.

o Int returns the integer portion of a number.
Ex: if FieldA=25.52 then Int([FieldA]) returns 25.

o The cos, sin, tan, exp, atan and log functions are supported.

o Round(value;#_of_decimals) returns a number rounded to a specified number of

decimal places.
Ex: if [FieldA]="123.4875" then Round([FieldA];3)="123.488"

If function

The syntax of the if function is the following:

o If (logical_test;value_if_true;value_if_false)
Ex: if field [FieldB]=1 then If([FieldB]=1;"Yes";"No") returns "Yes"

 The value_if_true and value_if_false arguments are optional.
 Omit them if you don't want the value of the field to be changed.
 Ex: if field [FieldB]=0 then If([FieldB]=1;"Yes";) will not modify the target field.
 Ex: if field [FieldB]=1 then If([FieldB]=1;;"No") will not modify the target field.

 If, on the contrary, you wish to blank out the target field, then use double-quotes.
 Ex: if field [FieldB]=0 then If([FieldB]=1;"Yes";"") will blank out the target field.

Comparison functions

o Case (reference_value;value1:result1;value2:result2…;else:resultx) compares
value1, value2, … to reference_value. As soon as it finds a match, it returns the associated
value. If no match is found, it returns the value associated with the keyword Else. Note
the use of : to associate a value to a result.
Ex: if [Field]=2 then Case([Field];"1":"Male";"2":"Female") returns "Female"

Automatic Field Calculations Reference Guide 8

If [Field]=Japan then Case([Field];"US":"Domestic";"Canada":"North
America";"Mexico":"North America";Else:"International") Returns "International"

o In (reference_value;value1;value2;…) compares value1, value2, … to

reference_value. As soon as it finds a match, it returns True. If no match is found, it
returns False
Ex: if [Field]=2 then In([Field];"1";"2";"3") returns True

o Between (reference_value;value1;value2) returns True if reference_value is equal

or higher than value1 and equal or lower than value2. If not, it returns False.
Ex: if [Field]=2 then Between([Field];"1";"2") returns True

Statistical functions

o Min(value1;value2;…) returns the smallest value (numeric values or dates only:
empty values are ignored)
Ex: if [FieldB]=10 and [FieldC]=20 then Min([FieldB];[FieldC])=10

o MinC(value1;value2;…) returns the smallest value (characters are accepted, the sort
is based on the characters, so in this case 10 is higher than 20)
Ex: if [FieldB]="ProductA" and [FieldC]="ProductB" then
MinC([FieldB];[FieldC])="ProductA"

o Max(value1;value2;…) returns the highest value (numeric values or dates only: empty
values are ignored)
Ex: if [FieldB]=10 and [FieldC]=20 then Max ([FieldB];[FieldC])=20

o MaxC(value1;value2;…) returns the highest value (characters are accepted, the sort is
based on the characters, so in this case 10 is higher than 20)
Ex: if [FieldB]="ProductA" and [FieldC]="ProductB" then
MaxC([FieldB];[FieldC])="ProductB"

o Count(value1;value2;…) counts the number of values that are numeric
Ex: if [FieldB]=1, [FieldC]="X" and [53]=2 then Count([FieldB];[FieldC];[53])=2

o CountC(value1;value2;…) counts the number of values that are not blank
Ex: if [FieldB]=1, [FieldC] is empty(blank) and [53]=2 then
CountC([FieldB];[FieldC];[53])=2

o CountBlank(value1;value2;…) counts the number of values that are blank
Ex: if [FieldB]=1, [FieldC] is empty(blank) and [53]=2 then
CountBlank([FieldB];[FieldC];[53])=1

o CountIf(logical_test; value1;value2;…) counts the number of values that meet the
given condition

Automatic Field Calculations Reference Guide 9

Ex: if [FieldB]="Yes",[FieldC]="Yes",[53]="No" then
CountIf("="Yes";[FieldB];[FieldC];[53])=2

o Avg(value1;value2;…) calculates the arithmetic mean of the values (numeric values
only. Blank and characters are ignored)
Ex: if [FieldB]=10, [FieldC] is empty(blank) and [53]=20 then
Avg([FieldB];[FieldC];[53])=15

o Large(k;value1;value2;…) returns the k-th largest value (numeric values only. Blank
and characters are ignored)
Ex: if [FieldA]=10, [FieldB]=12 and [FieldC]=20 then
Large(2;[FieldA];[FieldB];[FieldC])=12

o Small(k;value1;value2;…) returns the k-th smallest value (numeric values only.
Blank and characters are ignored)
Ex: if [FieldA]=10, [FieldB]=12 and [FieldC]=20 then
Small(3;[FieldA];[FieldB];[FieldC])=10

AutoNumber function

o AutoNumber (path_of_file_containing_next_number_to_be_used) opens
the specified path, reads the first line and returns it. If it is a number, it will
automatically increment it by one.
Ex: If you open Notepad, type 1000, save it as a text file called AutoNumber.txt in the
Data folder, AutoNumber(“AutoNumber.txt”) returns 1000 , opens the file, changes the
value to 1001 and saves the file.
NOTE: if the file is not saved in the Data folder, you will need to specify the complete
path like C:\MyDocuments\AutoNumber.txt

Automatic Field Calculations Reference Guide 10

Date/Time functions

o Now() will return the current date.
Ex: Now() returns "9/14/2004".

o Time() will return the current time.
Ex: Time() returns "9:10:50 PM".

o Day will extract the day from a date.
Ex: if FieldA = "2004/08/31" then Day([FieldA]) returns 31.

o Weekday will return the day of the week (Sunday=1, Monday=2, etc.)
Ex: if FieldA = "2004/08/31" then Weekday([FieldA]) returns 3

o Weekdayname will return the name of the day.
Ex: if FieldA = "2004/08/31" then Weekdayname([FieldA]) returns Tuesday.

o Month will extract the month from a date.
Ex: if FieldA = "2004/08/31" then Month([FieldA]) returns 8.

o Monthname will return the name of the month.
Ex: if FieldA = "2004/08/31" then Monthname([FieldA]) returns August.

o Year will extract the year from a date.
Ex: if FieldA = "2004/08/31" then Year([FieldA]) returns 2004.

o Hour, Minute and Second will extract the hours, minutes and seconds of a date/time.
Ex: if FieldA = "9:10:50 PM" then Hour([FieldA]) returns 21 (for 9PM).

o Age(Birthdate;ReferenceDate) will return the age of a date in years as of the date of
the reference date. The reference date is optional. If not mentioned, today’s date is used.
Ex:
if FieldA = "12/31/1960" and today’s date is 12/31/2008 then Age([FieldA]) returns 48.
if FieldA = "12/31/1960" then Age([FieldA];”12/31/2010") returns 50.

o DateDiff(interval;date1;date2;firstdayofweek;firstweekofyear) returns the
number of time intervals between two specified dates
Ex: if [FieldB]="12/12/2003" and [FieldC]="12/15/2003" then
datediff("d";[FieldB];[FieldC])=3

You can use the DateDiff function to determine how many specified time intervals exist
between two dates. For example, you might use DateDiff to calculate the number of
days between two dates, or the number of weeks between today and the end of the year.

To calculate the number of days between date1 and date2, you can use either Day of
year ("y") or Day ("d"). When interval is Weekday ("w"), DateDiff returns the number

Automatic Field Calculations Reference Guide 11

of weeks between the two dates. If date1 falls on a Monday, DateDiff counts the
number of Mondays until date2. It counts date2 but not date1. If interval is Week
("ww"), however, the DateDiff function returns the number of calendar weeks between
the two dates. It counts the number of Sundays between date1 and date2. DateDiff
counts date2 if it falls on a Sunday; but it doesn't count date1, even if it does fall on a
Sunday.

If date1 refers to a later point in time than date2, the DateDiff function returns a
negative number.

Interval Firstdayofweek firstweekofyear
Setting Descr. Value Descr. Value Descr.

yyyy Year 1 Sunday 1 Start with week in which
Jan1 occurs q Quarter 2 Monday

m Month 3 Tuesday
y Day of year 4 Wednesday 2 Start with the 1st week that

has at least 4 days in the
new year

d Day 5 Thursday
w

wd
Weekday
Working day

6
7

Friday
Saturday

ww Week 3 Start with first full week of
the year h Hour

n Minute
s Second

Firstdayofweek and firstweekofyear are optional. If omitted, a value of 1 is
assumed.

Working day means Monday To Friday.

o DateAdd(interval;number;date) returns a date to which a specified time interval
has been added.
Ex: if [FieldB]="12/12/2003" then DateAdd("d";3;[FieldB])="12/15/2003"

You can use the DateAdd function to add or subtract a specified time interval from a
date. For example, you can use DateAdd to calculate a date 30 days from today or a
time 45 minutes from now.

To add days to date, you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

The DateAdd function won't return an invalid date. The following example adds one
month to January 31:

DateAdd("m"; 1; "31-Jan-95")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns
29-Feb-96 because 1996 is a leap year.

Automatic Field Calculations Reference Guide 12

Interval
Setting Descr.

yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday

ww Week
wd Working Day
h Hour
n Minute
s Second

Working day means Monday To Friday.

o DatePart(interval;date;firstdayofweek;firstweekofyear) returns the specified
part of a given date.
Ex: if [FieldB]="12/12/2003" then DatePart("y";[FieldB])=346 (346th day of the year)

You can use the DatePart function to evaluate a date and return a specific interval of
time. For example, you might use DatePart to calculate the day of the week or the
current hour.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval
symbols.

Interval Firstdayofweek firstweekofyear
Setting Descr. Value Descr. Value Descr.

yyyy Year 1 Sunday 1 Start with week in which
Jan1 occurs q Quarter 2 Monday

m Month 3 Tuesday
y Day of year 4 Wednesday 2 Start with the 1st week that

has at least 4 days in the new
year

d Day 5 Thursday
w Weekday 6 Friday

ww Week 7 Saturday 3 Start with first full week of
the year h Hour

n Minute
s Second

Firstdayofweek and firstweekofyear are optional. If omitted, a value of 1 is
assumed.

Format function

Automatic Field Calculations Reference Guide 13

The syntax of the format function is the following:

o Format (expression;format)
Ex: if field [FieldB]=2343.3 then Format([FieldB];"###0.00") returns 2343.30

The format argument is a string of characters with one or more of the following characters:

String formatting:

@ A character should appear at this position. If there is no character for this position, a
space is inserted. If there are more than one @, they are applied from right to left.

& Same as @, except that no space is inserted if there is no character at this position.
! Reverses the order in which @ and & are applied (ie. becomes from left to right).
< Converts all characters to lowercase.
> Converts all characters to uppercase.

Ex: Format("AbcD"; ">")= ABCD (similar to the UCase function)
 Format("4142345678";"(@@@) @@@-@@@@")=(414) 234-5678
 Format("2345678";"(@@@) @@@-@@@@")=() 234-5678
 Format("2345678";"!(@@@) @@@-@@@@")=(234) 567-8

Number formatting:

 (blank)The digit is returned without formatting
0 A digit is supposed to appear at this position. If there is none, then 0 is displayed. If the

format string contains more 0 than the number to be formatted, extra 0s are added in
front or at the end.

 # Similar to 0 except that nothing is inserted if no digit is to appear
. Combined with 0 or #, specifies the number of digits which should appear on each side

of the decimal character.
% Multiplies the number by 100 and adds a % sign.
, Inserted in series of 0 or #, indicates the thousand separator. A double comma indicates

that the number should be divided by 1000.
E-,
E+

If the format string contains at least a 0 or #, converts the number to scientific notation.

Ex: Format(2343.3;"0000.00") = 02343.20
 Format(2343.3;"$###,###.00") = $2,343.00
 Format(45, "+###") = +45

Date and time formatting

D Displays the date according to your locale’s long date format (Windows Control
Panel)

d Displays the date according to your locale’s short date format (Windows)
T Displays the time according to your locale’s long time format

Medium
Time

Displays the time in 12-hour format using hours and minutes and the AM/PM
designator.

t Displays a time using the 24-hour format

Automatic Field Calculations Reference Guide 14

f Displays the long date and short time according to your locale's format
F Displays the long date and long time according to your locale's format
g Displays the short date and short time according to your locale's format
M Displays the month and the day of a date
R Formats the date and time as Greenwich Mean Time (GMT)
Y Formats the date as the year and month
c Displays the date (as ddddd), the time (as ttttt) if one or both are specified.
d Displays the day (1 to 31).

dd Displays the day using 2 digits (01 to 31).
ddd Displays the day using 3 characters (Sun to Sat).

dddd Displays the full day (Sunday to Saturday).
ddddd Displays the date in Short date format (your Windows settings).

dddddd Displays the date in long time format (your Windows settings).
MM Displays the month using 2 digits (01 to 12)

MMM Displays the month using 3 characters (Jan to Dec)
MMMM Displays the full month (January to December)

T Displays the time in AM/PM format
y Displays the day (1 to 366)

yy Displays the year using 2 digits
yyyy Displays the full year (1000 to 9999)

h Displays the hours(0 to 12) 12-hour format
hh Displays the hours(00 to 12) 12-hour format
H Displays the hours(0 to 24)

HH Displays the hours(00 to 24)
m Displays the minutes (0 to 59)

mm Displays the minutes (00 to 59)
s Displays the seconds (0 to 59)
ss Displays the seconds (00 to 59)
tt Displays AM or PM

Ex: Format(01/15/2004;"dddd")=Thursday
 Format(Now();"T")="12:59:47 PM”

Run function

The syntax of the Run function is the following:

o Run("path_of_file_to_be_run","parameters") launches the file if it is an
executable or opens the file with the program associated to its extension if any.

parameters: (optional) parameters to be sent to the program at startup, if any.

Automatic Field Calculations Reference Guide 15

MessageBox function

The syntax of the MessageBox function is the following:

o MessageBox("your_message") pops up a simple message window which the user
can dismiss by clicking OK.

NOTE: while the message window is displayed, all calculations are halted. The user will
need to dismiss the window to continue working with ACT!.

ConfirmationBox function

The syntax of the ConfirmationBox function is the following:

o ConfirmationBox("your_message") pops up a message window which the user can

dismiss by clicking either Yes or No. If the user clicks Yes, the funtion returns True. If the
user clicks No, the function returns False.

NOTE: while the confirmation window is displayed, all calculations are halted. The user
will need to dismiss the window to continue working with ACT!.

PromptBox function

The syntax of the PromptBox function is the following:

o PromptBox("your_message,allowcancel,title") pops up a message window with

a text box. If the user clicks OK, the function returns the value entered in the text box. If
allowcancel is set to 0, the Cancel button is shown and the user needs to enter a value. If
allowcancel is set to 1, the Cancel button is displayed and the user may cancel out the
prompt window which has the same result as entering no value in the text box, i.e the
function returns nothing.

NOTE: while the prompt window is displayed, all calculations are halted. The user will
need to dismiss the window to continue working with ACT!.

Internal Record ID function

The syntax of the InternalRecordID function is simply InternalRecordID () and returns the
internal GUID used by ACT! To identify the record.
Its format is xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx.

Automatic Field Calculations Reference Guide 16

Here is an example is: 086273c0-12cf-446e-9afe-f09164628d4d

Copy To Clipboard function

The syntax of the CopyToClipboard function is the following:

o CopyToClipboard("text_to_copy") will copy the text to the clipboard.

GenerateDocument function

The syntax of the GenerateDocument function is the following:

o GenerateDocument("template_path") will launch a merge of the specified
template. If the template is in the Act! template folder, simply indicate the name of the
file, otherwise indicate the full path.
Ex: GenerateDocument("03 Presentation - Follow - Up.adt")

Financial functions

o FV(rate;nper;pmt;pv;type) returns the future value of an annuity based on periodic,
fixed payments and a fixed interest rate.

The rate and nper must be calculated using payment periods expressed in the same
units. For example, if rate is calculated using months, nper must also be calculated
using months.
For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

rate: interest rate per period. For example, if you get a car loan at an annual percentage
rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or
0.0083.
nper: total number of payment periods in the annuity. For example, if you make
monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment
periods.
pmt: payment to be made each period. Payments usually contain principal and interest
that doesn't change over the life of the annuity.
pv: (optional) present value (or lump sum) of a series of future payments. For example,
when you borrow money to buy a car, the loan amount is the present value to the lender
of the monthly car payments you will make. If omitted, 0 is assumed.
type: (optional) when payments are due. Use 0 if payments are due at the end of the
payment period, or use 1 if payments are due at the beginning of the period. If omitted, 0
is assumed.

Automatic Field Calculations Reference Guide 17

o IPmt(rate, per, nper, pv, fv, type) returns the interest payment for a given period of

an annuity based on periodic, fixed payments and a fixed interest rate.

The rate and nper arguments must be calculated using payment periods expressed in
the same units. For example, if rate is calculated using months, nper must also be
calculated using months.
For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

rate: interest rate per period. For example, if you get a car loan at an annual percentage
rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or
0.0083.
per: payment period in the range 1 through nper.
nper: total number of payment periods in the annuity. For example, if you make
monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment
periods.
pv: present value, or value today, of a series of future payments or receipts. For example,
when you borrow money to buy a car, the loan amount is the present value to the lender
of the monthly car payments you will make.
fv: (optional) future value or cash balance you want after you've made the final payment.
For example, the future value of a loan is $0 because that's its value after the final
payment. However, if you want to save $50,000 over 18 years for your child's education,
then $50,000 is the future value. If omitted, 0 is assumed.
type: (optional) when payments are due. Use 0 if payments are due at the end of the
payment period, or use 1 if payments are due at the beginning of the period. If omitted, 0
is assumed.

o NPer(rate, pmt, pv, fv, type) returns the number of periods for an annuity based on

periodic, fixed payments and a fixed interest rate.

For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

rate: interest rate per period. For example, if you get a car loan at an annual percentage
rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or
0.0083.
pmt: payment to be made each period. Payments usually contain principal and interest
that doesn't change over the life of the annuity.
pv: present value, or value today, of a series of future payments or receipts. For example,
when you borrow money to buy a car, the loan amount is the present value to the lender
of the monthly car payments you will make.
fv: (optional) future value or cash balance you want after you've made the final payment.
For example, the future value of a loan is $0 because that's its value after the final
payment. However, if you want to save $50,000 over 18 years for your child's education,
then $50,000 is the future value. If omitted, 0 is assumed.
type: (optional) when payments are due. Use 0 if payments are due at the end of the

Automatic Field Calculations Reference Guide 18

payment period, or use 1 if payments are due at the beginning of the period. If omitted, 0
is assumed.

o Pmt(rate, nper, pv, fv, type) returns the payment for an annuity based on periodic,

fixed payments and a fixed interest rate.

The rate and nper arguments must be calculated using payment periods expressed in
the same units. For example, if rate is calculated using months, nper must also be
calculated using months.
For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

rate: interest rate per period. For example, if you get a car loan at an annual percentage
rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or
0.0083.
nper: total number of payment periods in the annuity. For example, if you make
monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment
periods.
pv: present value, or value today, of a series of future payments or receipts. For example,
when you borrow money to buy a car, the loan amount is the present value to the lender
of the monthly car payments you will make.
fv: (optional) future value or cash balance you want after you've made the final payment.
For example, the future value of a loan is $0 because that's its value after the final
payment. However, if you want to save $50,000 over 18 years for your child's education,
then $50,000 is the future value. If omitted, 0 is assumed.
type: (optional) when payments are due. Use 0 if payments are due at the end of the
payment period, or use 1 if payments are due at the beginning of the period. If omitted, 0
is assumed.

o PV(rate, nper, pmt, fv, type) returns the present value of an annuity based on

periodic, fixed payments to be paid in the future and a fixed interest rate.

The rate and nper arguments must be calculated using payment periods expressed in
the same units. For example, if rate is calculated using months, nper must also be
calculated using months.
For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.

rate: interest rate per period. For example, if you get a car loan at an annual percentage
rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or
0.0083.
nper: total number of payment periods in the annuity. For example, if you make
monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment
periods.
pmt: payment to be made each period. Payments usually contain principal and interest
that doesn't change over the life of the annuity.

Automatic Field Calculations Reference Guide 19

fv: (optional) future value or cash balance you want after you've made the final payment.
For example, the future value of a loan is $0 because that's its value after the final
payment. However, if you want to save $50,000 over 18 years for your child's education,
then $50,000 is the future value. If omitted, 0 is assumed.
type: (optional) when payments are due. Use 0 if payments are due at the end of the
payment period, or use 1 if payments are due at the beginning of the period. If omitted, 0
is assumed.

o Rate(nper, pmt, pv, fv, type, guess) returns the interest rate per period for an
annuity.

For all arguments, cash paid out (such as deposits to savings) is represented by negative
numbers; cash received (such as dividend checks) is represented by positive numbers.
Rate is calculated by iteration. Starting with the value of guess, Rate cycles through
the calculation until the result is accurate to within 0.00001 percent. If Rate can't find a
result after 20 tries, it fails. If your guess is 10 percent and Rate fails, try a different
value for guess.

nper: total number of payment periods in the annuity. For example, if you make
monthly payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment
periods.
pmt: payment to be made each period. Payments usually contain principal and interest
that doesn't change over the life of the annuity.
pv: present value, or value today, of a series of future payments or receipts. For example,
when you borrow money to buy a car, the loan amount is the present value to the lender
of the monthly car payments you will make.
fv: (optional) future value or cash balance you want after you've made the final payment.
For example, the future value of a loan is $0 because that's its value after the final
payment. However, if you want to save $50,000 over 18 years for your child's education,
then $50,000 is the future value. If omitted, 0 is assumed.
type: (optional) when payments are due. Use 0 if payments are due at the end of the
payment period, or use 1 if payments are due at the beginning of the period. If omitted, 0
is assumed.
guess: value you estimate will be returned by Rate. If omitted, guess is 0.1 (10
percent).

Automatic Field Calculations Reference Guide 20

Examples of calculations

You can access a number of commented examples by using the File>Examples menu of the
Syntax editor, or by clicking the Ex button on the editor’s toolbar.

Rev. Nov 20, 2014

